
Learning-based Current Estimation for DC/DC Converters
Operating in Continuous and Discontinuous Conduction Modes

Gerardo Becerra, Fredy Ruiz, Diego Patino, Minh Tu Pham, Xuefang Lin-Shi

May 30, 2024

1/30



2/30

Agenda

Introduction

Problem Statement

Optimal Filtering for State Estimation of Unknown Systems

Results

Conclusion - Perspectives



3/30

Agenda

Introduction

Problem Statement

Optimal Filtering for State Estimation of Unknown Systems

Results

Conclusion - Perspectives



4/30

Continuous/Discontinuous Conduction Modes (CCM/DCM)

▶ PWM converters with two switches (e.g. MOSFET and diode).

SEPIC Converter

Continuous Conduction Mode

▶ CCM-DCM transitions → change in dynamic properties.

▶ Hybrid behavior → complexity in observation problem.
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Switched Power Converter - Hybrid Model

▶ System of switched linear differential-algebraic equations.

Pσ(t)ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Bxw(t) (1)

y(t) = Cσ(t)x(t) +Dσ(t)u(t) + Byw(t)

▶ x(t) ∈ Rnx : state, u(t) ∈ Rnu : input y(t) ∈ Rny : output.

▶ Bxw(t): process noise , Byw(t) measurement noise.

▶ Pσ, Aσ, Bσ, Cσ, Dσ: selected by the system mode σ(t) ∈ I .
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SEPIC Converter - Hybrid Model

▶ System matrices:

As(t),δ(t) =


−RL1 − βRL2 s − 1 0 sδ − δ

1− s sδ s − sδ sδ
β −s β − RL2(s + δ − sδ) δ − sδ

δ − sδ 0 −δ −1/Ro

 ,

Bs(t),δ(t) =


1
0
0
0

 ,Ps(t),δ(t) =


L1 0 βL1 0
0 (1− sδ)C1 0 0
0 0 (s + δ − sδ)L2 0
0 sδC1 0 C2

 ,
Cs(t),δ(t) =

[
0 0 0 1

]
,Ds(t),δ(t) = 0, β = (1− s)(1− δ)

▶ s(t): Controlled switch state, δ(t): Uncontrolled switch state
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Observation Problem

Problem
Consider the system in Eq. (1). Assume matrices Pσ, Aσ, Bσ, Cσ, Dσ, Bx , By are
unknown. Based on discrete-time measurements of u, y and s, obtain discrete-time
estimates x̂ of the unmeasured state x .

Remarks:

▶ We assume no knowledge of the system model is available, but only
measurements.

▶ We assume hybrid behavior (CCM & DCM operation) might be present in the
system.
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Contributions

▶ Data-based estimation for PWM power converters in a wide operation range
(CCM-DCM).

▶ Parallel implementation of the data-based estimation in a GPU.

▶ Use of principal component analysis (PCA) for dimensionality reduction of the
datasets.
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Optimal Filtering for State Estimation of Unknown Systems

Discrete-time nonlinear system

xk+1 = F(xk ,uk ,dk ,wk)

yk = G(xk ,uk ,dk ,wk)

Causal estimator for state variable
vk = xi ,k , i ∈ [1, . . . , nx ]:

v̂k = f (d̃k , ỹk , ũk , d̃k−1, ỹk−1, ũk−1,

. . . , d̃k−m+1, ỹk−m+1, ũk−m+1).

▶ Objective: Obtain a causal filter with small estimation error vk − v̂k .

▶ Assumptions: {F ,G} unknown, system is n-step observable [2], noise bounded in
lp-norm.

▶ Approach: Set Membership framework for system identification [4].
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Direct Filtering - Set Membership Framework [4]

Assume dataset of measurements D = {(φ̃i , ṽi ), i = 1, 2, . . . ,N} is available.
Prior assumptions on f0:

f0 ∈ F(γ) :=
{
f ∈ C 1 :

∥∥f ′(φ)∥∥ ≤ γ,∀φ ∈ R(nd+ny+nu)m
}

Prior assumptions on noise:

W ∈ W = {[w1,w2, . . . ,wT ] : |wk | ≤ ε, ∀k1, 2, . . . ,T}

Define the feasible filter set (FFS):

FFS
.
= {f ∈ F(γ) : |ṽi − f (φ̃i )| ≤ ε, i = 1, . . . ,N}
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Direct Filtering - Set Membership Framework [4]

Theorem

1. A necessary condition for the FFS to be non-empty is:

f (φ̃i ) ≥ ṽi − ε, i = 1, . . . ,N

2. A sufficient condition for the FFS to be non-empty is:

f (φ̃i ) > ṽi − ε, i = 1, . . . ,N
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Direct Filtering - Set Membership Framework

The worst-case bounds are defined as:

f c(φ̃k) = min
i=1,...,N

(ṽi + ε+ γ ∥φ̃k − φ̃i∥ )

f c(φ̃k) = max
i=1,...,N

(ṽi − ε− γ ∥φ̃k − φ̃i∥)

The direct filter (DF) is defined as:

x̂k = fc (φ̃k) =
1

2

[
f (φ̃k) + f (φ̃k)

]
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Direct Filter Learning

Algorithm 1: Direct Filter learning for power converters (offline)

Result: D, γ, ε
1. Design random test signals d̃(t), ũ(t) for driving the power converter to operate
under varied conditions (CCM and DCM)

2. Measure ỹ(t), ṽ(t)
3. ȳ(t) = average(ỹ), v̄(t) = average(ṽ), average(·) := non-causal filter

4. ỹk = resample(ȳ(t),Ts), ṽk = resample(v̄(t),Ts), d̃k = resample(d̃(t),Ts),
ũk = resample(ũ(t),Ts),

5. Prepare dataset D = {φ̃i , ṽi , i = 1, 2, . . . ,N} using d̃k , ỹk , ũk , ṽk
6. Take ε = ∥ṽ(t)− v̄(t)∥∞
7. Take γ∗ = min γ, subject to f (φ̃i ) > ṽi − ε, i = 1, . . . ,N (sufficient condition in
Theorem 1 [5])
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Direct Filter Execution

Algorithm 2: Direct filtering estimation for power converters (online)

Data: D, γ, ε
Result: v̂k
while true do

1. Measure d̃k , ỹk , ũk

2. φ̃k = [d̃
m
k ; ỹ

m
k ; ũ

m
k ]

3. f (φ̃k) = mini=1,...,N (ṽi + ε+ γ ∥φ̃k − φ̃i∥)
f (φ̃k) = maxi=1,...,N (ṽi − ε− γ ∥φ̃k − φ̃i∥)
4. v̂k = fc (φ̃k) =

1
2

[
f (φ̃k) + f (φ̃k)

]
end
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Direct Filtering - Advantages of the Approach

▶ Does not require an explicit system model.

▶ Able to represent the dynamics in the complete operating range (CCM/DCM).

▶ Provides a measure of uncertainty of the estimation.

▶ Finite Impulse Response (FIR) structure: BIBO stable.
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Real-time Implementation: Parallel Programming

▶ Distance computation ∥φ̃k − φ̃i∥ in optimal tightest bounds → Expensive.

▶ State-of-the-art: Approximation of DF over a grid in regressor space [1] → Unfeasible
for high-dimensional spaces.

▶ Each term ∥φ̃k − φ̃i∥ , i = 1, . . . ,N can be computed independently → parallelizable.

▶ Contribution: Parallel programming implementation using Nvidia CUDA for improving
computation performance:

Kernel 1 : ψj
i = (φ̃j

k − φ̃j
i )

2, i = 1, . . . ,N j = 1, . . . , 3m.

Kernel 2 : ∆i =
√∑3m

j=1 ψ
j
i , f i = ṽi + ε+ γ∆i , f i = ṽi − ε− γ∆i .

Kernel 3 : f = mini=1,...,N(f i ), f = maxi=1,...,N(f i ).

▶ Contribution: Principal component analysis (PCA) on regressor dataset to improve
computation performance.
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Kernel 3 : f = mini=1,...,N(f i ), f = maxi=1,...,N(f i ).

▶ Contribution: Principal component analysis (PCA) on regressor dataset to improve
computation performance.



18/30

Real-time Implementation: Parallel Programming

▶ Distance computation ∥φ̃k − φ̃i∥ in optimal tightest bounds → Expensive.

▶ State-of-the-art: Approximation of DF over a grid in regressor space [1] → Unfeasible
for high-dimensional spaces.

▶ Each term ∥φ̃k − φ̃i∥ , i = 1, . . . ,N can be computed independently → parallelizable.

▶ Contribution: Parallel programming implementation using Nvidia CUDA for improving
computation performance:

Kernel 1 : ψj
i = (φ̃j

k − φ̃j
i )

2, i = 1, . . . ,N j = 1, . . . , 3m.

Kernel 2 : ∆i =
√∑3m

j=1 ψ
j
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Example: SEPIC Converter

Observation problem: Compute estimates of current IL1(t) from measurements of
input voltage E (t), output voltage Vo(t) and duty cycle d(t) in PWM input s(t) for
the SEPIC converter operating in both CCM and DCM.

Comparison of direct filter (DF), direct filter with PCA-reduced dataset (DF+PCA),
neural networks (NN), extended Kalman Filter (EKF) and particle filter (PF).
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Example: SEPIC Converter - Simulation Results
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Example: SEPIC Converter - Simulation Results

Performance measures:

Relative absolute error: RAE = 100 ∥v − v̂∥1 / ∥v − v̄∥1
Root relative square error: RRSE = 100 ∥v − v̂∥2 / ∥v − v̄∥2

Worst-case error: RWCE = 100 ∥v − v̂∥∞ / ∥v − v̄∥∞
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Example: SEPIC Converter - Experimental Results

Converter Parameters
SEPIC u(t) = 20 V, L1 = 2.3 mH, C1 = 190

µF, L2 = 330 µH, C2 = 190 µF, RL1 =
2.134 Ω, RL2 = 0.234 Ω, Ro = 22 Ω.

SEPIC converter test bench available at Laboratoire Ampère
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Example: SEPIC Converter - Experimental Results

(a)

(b)

IL1 Aver
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Worst-case error: RWCE = 100 ∥v − v̂∥∞ / ∥v − v̄∥∞
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Performance: CPU vs GPU vs GPU+PCA

Dataset
Mean performance loss (%) Execution time (ms) / speedup w.r.t CPU
RAE RRSE RWCE CPU GPU GPU+PCA

DS1 1.5446 1.6832 3.0170 1.6410 1.0141 / 1.6183X 0.2419 / 6.7847X
DS2 0.2641 0.8726 4.0489 1.6445 1.0157 / 1.6191X 0.2434 / 6.7577X
DS3 0.6703 0.1592 6.4868 1.6491 1.0172 / 1.6212X 0.2437 / 6.7660X
DS4 0.4993 0.7582 1.9521 1.6428 1.0176 / 1.6144X 0.2443 / 6.7235X

Performance loss is small compared to gains in computation speed!
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Conclusion

With respect to the state-of-the-art, we have introduced:

▶ A practical approach to direct filtering in power converters using parallel
programming and data compression.

▶ An estimation approach that works on a wide operation range, without requiring a
complex system model.
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Perspectives

▶ Implementation in an RTOS platform where GPU kernel execution can satisfy
deterministic constraints.

▶ Investigate dependence of estimation performance on parameters m, N for
different converter topologies.

▶ Investigate relation between performance loss and dimension of PCA
transformation.

▶ Investigate other dimensionality reduction approaches (Kernel PCA, linear
discriminant analysis, generalized discriminant analysis, auto-encoders).
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Thank you for your attention.

gerardo.becerra@estia.fr
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Direct Filter - Observability [2]

Consider the following discrete-time linear
system. Assume it is n-step observable.

x t+1 = A(d̃ t)x t + Bu(d̃
t)ũt + Bw (d̃

t)w t

ỹ t = C (d̃ t)x t + Du(d̃
t)ũt + Dw (d̃

t)w t

Definition (n-step Observability)
(A(d̃ t),C (d̃ t)) is n-step observable if, for any
time t and any sequence d̃ t , the state x t can
be uniquely determined by the corresponding
zero-input response y t for k = t, . . . , t + n − 1.

n-step observability matrix of the system:

On
k =


C t+n−1Φt+n−1,t

...
C t+1Φt+1,t

C t


Transition matrix of the system:

Φt2,t1 =

{
At2−1At2−2 . . .At1 , t2 > t1

I , t2 = t1
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Direct Filter - Observability [2]

▶ Since the system is assumed to be n-step observable, it follows that
rank(Ot

n) = n. Therefore, the inverse of Ot
n exists.

▶ In practice: Run the estimator assumming (A(d̃ t),C (d̃ t)) are known, and find
minimum n such that rank(Ot

n) = n.

▶ SEPIC converter in CCM: n = 20.
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Direct Filter - Observability [2]

Evolution of ỹ from t − n to t − 1:

yt−1,n = Ot−n
n x t−n + T t−n,n

u ut−1,n + T t−n,n
w wt−1,n

T t−1,n
α =


Dt−1

α C t−1Φt−1,t−1B t−2
α C t−1Φt−1,t−2B t−3

α . . . C t−1Φt−1,t−n+1B t−n
α

0 Dt−2
α C t−2Φt−2,t−2B t−3

α . . . C t−2Φt−2,t−n+1B t−n
α

0 0 Dt−3
α . . . C t−3Φt−3,t−n+1B t−n

α
...

...
...

. . .
...

0 0 0
. . . Dt−n

α
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