Introduction 000000	Stator flux observer OO	Position and speed estimator	Experimentation 000	Conclusion OO	References

Robust sensorless flux and position estimation for SynRMs

Ruben Orsolle-Tyberg¹, Pauline Bernard², Pascal Combes³

¹ CentraleSupélec, Gif-sur-Yvette ²Centre Automatique et Systèmes, Mines Paris, Université PSL, France ³Schneider Toshiba Inverter Europe, France

IECON, October 2023

イロト イヨト イヨト

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
•00000	OO	0000	000	00	
Contents					

Introduction

Stator flux observer

Position and speed estimator

Experimental results

6 Conclusion

R. Orsolle-Tyberg, P. Bernard, P. Combes

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	00	
SynRMs					

Principle of operation :

The rotor is designed in such a way its magnetic reluctance is lower in one direction, which tends to align with the rotating field produced by stator currents

SynRM (transversal cut) from [Im et al. (2009)]

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	OO	
SynRMs					

Principle of operation :

The rotor is designed in such a way its magnetic reluctance is lower in one direction, which tends to align with the rotating field produced by stator currents

Advantages:

- $\bullet~$ No expensive permanent magnet $\Rightarrow~$ Cheaper than PMSMs
- \bullet Few losses in rotor \Rightarrow More efficient than IMs

SynRM (transversal cut) from [Im et al. (2009)]

A (1) > A (2) > A

.∃⇒ ⇒

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	00	0000	000	00	
SynRMs					

Principle of operation :

The rotor is designed in such a way its magnetic reluctance is lower in one direction, which tends to align with the rotating field produced by stator currents

Advantages:

- $\bullet~$ No expensive permanent magnet $\Rightarrow~$ Cheaper than PMSMs
- Few losses in rotor \Rightarrow More efficient than IMs

Challenges:

- Sensorless control is more difficult
- Magnetic saturation modeling is paramount for a proper control of the SynRM

SynRM (transversal cut) from [Im et al. (2009)]

A (1) > A (2) > A

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	00	0000	000	00	
Sensorless	control/observ	ation of SynRMs			

Sensorless estimation strategies

- basic/extended EMF approach to estimate stator flux, rotor position and speed [Senjyu et al. (2001); Ichikawa et al. (2006)]
- adaptive observers with propotional current control [Tuovinen et al. (2011); Kojima et al. (2020)], or sliding mode current control [Liu et al. (2018); Pavlić et al. (2021)]
- current ripple due to PWM voltage modulation to estimate rotor position [Matsuo and Lipo (1995); Consoli et al. (1999); Capecchi et al. (2001)]

イロト イボト イヨト イヨト

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	00	0000	000	00	
Sensorless	control/observ	ation of SynRMs			

Sensorless estimation strategies

- basic/extended EMF approach to estimate stator flux, rotor position and speed [Senjyu et al. (2001); Ichikawa et al. (2006)]
- adaptive observers with propotional current control [Tuovinen et al. (2011); Kojima et al. (2020)], or sliding mode current control [Liu et al. (2018); Pavlić et al. (2021)]
- current ripple due to PWM voltage modulation to estimate rotor position [Matsuo and Lipo (1995); Consoli et al. (1999); Capecchi et al. (2001)]

Contribution : Export stator flux observer designed for PMSMs in [Bernard and Praly (2017, 2018)] to the context of SynRMs allowing to estimate

- the stator flux, assuming only the resistance, current and voltage known, whatever the magnetic model is;
- e the rotor position fitting at best with the estimated flux, measured current and magnetic model (dynamic optimization)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	OO	
System m	odel				

SynRM model in fixed $\alpha\beta$ -frame :

$$\frac{d}{dt}\Psi_{\alpha\beta} = -R\iota_{\alpha\beta} + u_{\alpha\beta} \tag{1}$$

where

- $\Psi_{\alpha\beta}\in\mathbb{R}^2$: total magnetic flux generated by the stator windings
- $\imath_{lphaeta}\in \mathbb{R}^2$: current in the stator windings
- $u_{lphaeta}\in\mathbb{R}^2$: voltage drop accross the stator windings
- R : stator winding resistance

< □ > < □ > < □ > < □ > < □ >

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	OO	
System me	odel				

SynRM model in fixed $\alpha\beta$ -frame :

$$\frac{d}{dt}\Psi_{\alpha\beta} = -R\iota_{\alpha\beta} + u_{\alpha\beta} \tag{1}$$

where

- $\Psi_{\alpha\beta}\in\mathbb{R}^2$: total magnetic flux generated by the stator windings
- $\imath_{lphaeta}\in \mathbb{R}^2$: current in the stator windings
- $u_{lphaeta}\in \mathbb{R}^2$: voltage drop accross the stator windings
- R : stator winding resistance

Magnetic model in rotor dq-frame

 $\Psi_{dq} = \mathcal{R}(-\theta) \Psi_{\alpha\beta} \quad , \quad \imath_{dq} = \mathcal{R}(-\theta) \imath_{\alpha\beta}$

イロト イヨト イヨト イヨト

$$\Psi_{dq} = \begin{pmatrix} L_d & 0\\ 0 & L_q \end{pmatrix} \imath_{dq} + \delta_m(\Psi_{dq})$$
(2)

where

- L_d, L_q : linear inductances
- δ_m : magnetic saturation
- θ : electrical position

R. Orsolle-Tyberg, P. Bernard, P. Combes

5 / 21

Introduction 000000	Stator flux observer OO	Position and speed estimator	Experimentation 000	Conclusion OO	References
Equivalent	PMSM-like flux	x model			

Usually : plug (2) into (1) \implies electrical + mechanical model

But here : sensorless estimation \implies no mechanical signals/parameters

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	OO	
Equivalent	: PMSM-like fl	ux model			

Usually : plug (2) into (1) \implies electrical + mechanical model

But here : sensorless estimation \implies no mechanical signals/parameters

For $\hat{L} \in \mathbb{R}_{\geq 0}$ arbitrary, we have

$$\Psi_{\alpha\beta} = \hat{L}\imath_{\alpha\beta} + \delta_s(\hat{L}, \Psi_{dq}, \imath_{dq}, \theta)$$

with $\Phi_{eq} := \left\| \delta_s(\hat{L}, \Psi_{dq}, \imath_{dq}, \theta) \right\|$ constant in steady state !

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	OO	
Equivalent	: PMSM-like fl	ux model			

Usually : plug (2) into (1) \implies electrical + mechanical model

But here : sensorless estimation \implies no mechanical signals/parameters

For $\hat{L} \in \mathbb{R}_{\geq 0}$ arbitrary, we have

$$\Psi_{\alpha\beta} = \hat{L}\imath_{\alpha\beta} + \delta_s(\hat{L}, \Psi_{dq}, \imath_{dq}, \theta)$$

with $\Phi_{eq} := \left\| \delta_s(\hat{L}, \Psi_{dq}, \imath_{dq}, \theta) \right\|$ constant in steady state !

 \Rightarrow Equivalent PMSM model with unknown magnet flux whatever the SynRM magnetic model !

$$\begin{cases} \frac{d}{dt}\Psi_{\alpha\beta} = u_{\alpha\beta} - R \imath_{\alpha\beta} \\ \frac{d}{dt}\Phi_{eq} = 0 \end{cases} \quad \text{with} \quad 0 = |\Psi_{\alpha\beta} - \hat{L} \imath_{\alpha\beta}|^2 - \Phi_{eq}^2 \quad (3)$$

(Measured signals, Parameter assumed known, Design parameter)

イロト イヨト イヨト イヨト

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
00000●	OO	0000	000	OO	
Estimation	strategy				

Idea :

- () Estimate $(\hat{\Psi}_{\alpha\beta}, \hat{\Phi}_{eq})$ in (3) adapting PMSM observer to unknown magnet flux
- **②** Estimate θ (and $\dot{\theta}$) matching at best the magnetic model (2) with ($\hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta}$)

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	•O	0000	000	OO	
Contents					

Introduction

2 Stator flux observer

Position and speed estimator

Experimental results

6 Conclusion

Introduction 000000	Stator flux observer	Position and speed estimator 0000	Experimentation 000	Conclusion OO	References
Stator flu	x observer				

In steady state $(i_{dq}, u_{dq} \text{ constant})$

$$\frac{d}{dt}\Psi_{\alpha\beta} = u_{\alpha\beta} - R \imath_{\alpha\beta} \quad , \quad \frac{d}{dt}\Phi_{eq} = 0 \quad , \quad |\Psi_{\alpha\beta} - \hat{L} \imath_{\alpha\beta}|^2 - \Phi_{eq}^2 = 0$$

Theorem

$$\textit{Assume } \Phi_{eq} \neq 0 \textit{ and } \left| \frac{d}{dt} \theta_{eq}(t) \right| \geq \underline{\omega} > 0 \textit{ where } \theta_{eq} := \arg(\Psi_{\alpha\beta} - \hat{L} \imath_{\alpha\beta})$$

Then, for any $\gamma>0$, any $\hat{\Psi}_{\alpha\beta}(0)\in\mathbb{R}^2$ and $\hat{\Phi}(0)>0$, any solution of

$$\begin{cases} \frac{d}{dt}\hat{\Psi}_{\alpha\beta} = u_{\alpha\beta} - R\imath_{\alpha\beta} - 2\gamma\left(\hat{\Psi}_{\alpha\beta} - \hat{L}\imath_{\alpha\beta}\right)\left(\left|\hat{\Psi}_{\alpha\beta} - \hat{L}\imath_{\alpha\beta}\right|^2 - \hat{\Phi}^2\right)\\ \frac{d}{dt}\hat{\Phi} = \gamma\,\hat{\Phi}\left(\left|\hat{\Psi}_{\alpha\beta} - \hat{L}\imath_{\alpha\beta}\right|^2 - \hat{\Phi}^2\right) \end{cases}$$

verifies

$$\lim_{t o\infty} |\hat{\Psi}_{lphaeta}(t)-\Psi_{lphaeta}(t)|=0 \quad,\quad \lim_{t o\infty} \hat{\Phi}(t)=|\Phi_{eq}| \;.$$

Stator flux estimated whatever the inductance model \Rightarrow absorbed in Φ_{eq} !Schneider \mathbb{P}_{E} | PSL \mathbb{R}

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

э

Introduction 000000	Stator flux observer	Position and speed estimator •000	Experimentation 000	Conclusion OO	References
Contents					

Introduction

Stator flux observer

Position and speed estimator

Experimental results

6 Conclusion

R. Orsolle-Tyberg, P. Bernard, P. Combes

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	00	OOO	000	00	
Position e					

At each time t, given the flux estimate $\hat{\Psi}_{\alpha\beta}(t)$ and $\imath_{\alpha\beta}(t),$

find $\hat{ heta}(t) \in [-\pi,\pi]$ fitting best the magnetic model in dq-frame

$$\hat{\theta} = \arg\min_{\theta \in [-\pi,\pi]} \mathcal{C}(\theta, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta}) ,$$

where

$$\mathcal{C}(\theta, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta}) = \left|\underbrace{\hat{\Psi}_{\alpha\beta}}_{\textit{Estimate}} - \underbrace{\mathcal{R}(\theta) \left(\begin{array}{cc} L_d & 0\\ 0 & L_q \end{array}\right) \mathcal{R}(-\theta) \imath_{\alpha\beta} - \mathcal{R}(\theta) \delta_m(\hat{\Psi}_{dq}(\theta))}_{\textit{Model}}\right|^2$$

Introducti 000000	on Stator flux observer	Position and speed estimator 00●0	Experimentation 000	Conclusion OO	References

Reconstruction of θ modulo π !

Figure: Shape of $\mathcal{C}(\cdot, \Psi_{\alpha\beta}, \iota_{\alpha\beta})$ in standard conditions.

Introduction 000000	Stator flux observer 00	Position and speed estimator	Experimentation 000	Conclusion OO	References
Dynamic	position and sp	eed estimation			

Two solutions:

- Minimization of ${\mathcal C}$ at each time step ;
- Or, dynamic observer exploiting $\partial_{\theta} C(\theta, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta}) = 0$ and ω slowly varying

$$\begin{cases} \frac{d}{dt}\hat{\theta} = \hat{\omega} - \ell k_1 \frac{\partial_{\theta} C(\hat{\theta}, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta})}{\rho(|\partial_{\theta}^2 C(\hat{\theta}, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta})|)} \\ \frac{d}{dt}\hat{\omega} = \hat{\mu} - \ell^2 k_2 \frac{\partial_{\theta} C(\hat{\theta}, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta})}{\rho(|\partial_{\theta}^2 C(\hat{\theta}, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta})|)} \\ \frac{d}{dt}\hat{\mu} = -\ell^3 k_3 \frac{\partial_{\theta} C(\hat{\theta}, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta})}{\rho(|\partial_{\theta}^2 C(\hat{\theta}, \hat{\Psi}_{\alpha\beta}, \imath_{\alpha\beta})|)} \end{cases}$$

where

• $\rho : \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$ regularization map (for instance $\rho(s) = \sqrt{\epsilon^2 + s^2}$, with $\epsilon > 0$) • $K = (k_1, k_2, k_3)$ such that $\begin{pmatrix} -k_1 & 1 & 0 \\ -k_2 & 0 & 1 \\ -k_3 & 0 & 0 \end{pmatrix}$ Hurwitz, • $\ell > 0$ picked sufficiently large.

Schneider SS

- 4 回 ト 4 三 ト 4 三 ト

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	•00	OO	
Contents					

Introduction

Stator flux observer

Position and speed estimator

Experimental results

5 Conclusion

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	OOO	OO	
Experimen	tal results				

Observer implemented in Rapid-Prototyping system (from dSpace[®]), which controls the inverter bridge of a 3kW - 400V industrial drive (Schneider Electric ATV71)

SynRM parameters (magnetic saturation identified in [Combes et al. (2017)])

Rated power	750 W
Rated rotor speed	1500 RPM
Rated torque	4.8 N.m
Rated current	2.1 A RMS
Rated voltage	$400~{\rm V~RMS~pp}$
Rated frequency	50 Hz

		ψ_{d1}	1.278 Wb
J	$5e-3 \mathrm{kg.m^2}$	ψ_{d2}	0.947 Wb
n _p	2	ψ_{d3}	0.810 Wb
R	6.5 Ω	ψ_{q1}	0.033 Wb
L _d	590 mH	ψ_{q2}	0.148 Wb
L_q	$584 \mathrm{~mH}$	ψ_{x1}	– Wb
		ψ_{x2}	– Wb

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	00	
Experime	ntal results				

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	OO	
Experim	ental results				

PSL *

Schneider

< □ > < □ > < □ > < □ > < □ >

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	OO	
E	and the second second				

Experimental results

17 / 21

PSL *

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	•O	
Contents					

Introduction

2 Stator flux observer

Position and speed estimator

Experimental results

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	00	0000	000	O	
Conclusion	and perspectiv	/es			

Results :

- observer of stator flux for SynRM without knowing its magnetic model
- dynamic minimization algorithm for estimation of rotor position and speed from flux estimate and magnetic model

Future potentialities :

- improve dynamic behavior of position estimator through better tuning or minimization algorithm (taking into account the non-convexity of cost function)
- use this observer for sensorless control

イロト イヨト イヨト

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	OO	0000	000	OO	
References	T				

- Bernard, P. and Praly, L. (2017). Robustness of rotor position observer for permanent magnet synchronous motors with unknown magnet flux. *IFAC World Congress*.
- Bernard, P. and Praly, L. (2018). Convergence of gradient observer for rotor position and magnet flux estimation of permanent magnet synchronous motors. *Automatica*, 94:88–93.
- Capecchi, E., Guglielmi, P., Pastorelli, M., and Vagati, A. (2001). Position-sensorless control of the transverse-laminated synchronous reluctance motor. *IEEE Transactions on Industry Applications*, 37(6).
- Combes, P., Malrait, F., Martin, P., and Rouchon, P. (2017). Modeling and identification of synchronous reluctance motors. In 2017 IEEE International Electric Machines and Drives Conference (IEMDC), pages 1–6.
- Consoli, A., Russo, F., Scarcella, G., and Testa, A. (1999). Low- and zero-speed sensorless control of synchronous reluctance motors. *IEEE Transactions on Industry Applications*, 35(5).
- Ichikawa, S., Tomita, M., Doki, S., and Okuma, S. (2006). Sensorless control of synchronous reluctance motors based on extended emf models considering magnetic saturation with online parameter identification. *IEEE Transactions on Industry Applications*, 42(5).
- Im, J. B., Kim, W., Kim, K., Jin, C. S., Choi, J. H., and Lee, J. (2009). Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation. *IEEE Transactions on Magnetics*, 45(6):2803–2806.
- Kojima, T., Suzuki, T., Hazeyama, M., and Kayano, S. (2020). Direct speed estimation of synchronous reluctance machines using model reference adaptive system. In 2020 International Conference on Electrical Machines (ICEM). IEEE.
- Liu, Y.-C., Laghrouche, S., N'Diaye, A., and Cirrincione, M. (2018). Active-flux-based super-twisting sliding mode observer for sensorless vector control of synchronous reluctance motor drives. In 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA). IEEE.
- Matsuo, T. and Lipo, T. (1995). Rotor position detection scheme for synchronous reluctance motor based on current measurements. *IEEE Transactions on Industry Applications*, 31(4).
- Pavlić, I., Pravica, L., Kutija, M., Erceg, I., and Matuško, J. (2021). Sliding mode observers combined with locked loop techniques for sensorless vector controlled synchronous reluctance machines. In 2021 IEEE Superior Market and Motion Control Conference (PEMC). IEEE.

Introduction	Stator flux observer	Position and speed estimator	Experimentation	Conclusion	References
000000	00	0000	000	00	
References	5				

- Senjyu, T., Shingaki, T., and Uezato, K. (2001). Sensorless vector control of synchronous reluctance motors with disturbance torque observer. *IEEE Transactions on Industrial Electronics*, 48(2).
- Tuovinen, T., Hinkkanen, M., and Luomi, J. (2011). A comparison of an adaptive full-order observer and a reduced-order observer for synchronous reluctance motor drives. In 2011 Symposium on Sensorless Control for Electrical Drives. IEEE.

イロト イヨト イヨト イヨト