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Approaching the observation problem

Observation Problem:
Estimate state variables (x) from measured variables (y)

▶ The ”object” solving this problem is called an observer

▶ Measurements make what is called the a posteriori information It evolves
with time as data accumulate

▶ we have also a priori information: a model that links x and y !

ẋ = f (x) , y = h(x) , x ∈ Rn

Observer:
{t 7→ y(t)}

(f , h)
→ Observer → Estimated state variables x̂(t)



Dynamic observer approach

General structure of the observer:

▶ History of the measurement is stored in a finite dimensional ”state”

▶ The estimate is given as a function of this state

Observer:

{t 7→ y(t)} →
Dynamical System
ż(t) = φ(z(t), y(t))

z ∈ Rm
→ Observer output

x̂(t) = γ(z(t))
→ x̂(t)

Observer question : How to design φ and γ such that x̂(t) is a good estimate
of x(t)



Asking a computer science guy to solve the problem

The case of linear activation functions

The case of monotonic activation functions
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Conclusion



A popular approach in computer science

A computer science observer structure:

{t 7→ y(t)} → Dynamical System
RNN

→ Observer output
MLP

→ x̂(t)

RNN is a recurrent neural network
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A universal approach

▶ RNN and MLP depend on activation functions and parameters denoted Ω

▶ In the simplest case, a continuous time model of a RNN with one layer:

żi = W0σ(W1zi +W2y +W3)

where σ is an activation function and the Ω = (Wi ) are parameters
(matrices)

Computer science approach for state observer

1. Define a cost which quantifies what is a good estimate

2. Optimize the parameters of RNN and MLP based on data (or model) to
get an observer

Question: Can we give guaranty that it may work ? Can it be tunnable ?



Tunnable observers

{t 7→ y(t)} → Dynamical System
RNNΩ

→ Observer output
MLPΩ

→ x̂(t)

Tunnable observer structure
Given

▶ a compact (invariant) set X ⊂ Rn of initial conditions

▶ an observation time to

▶ an estimation treshold ϵ

There exist parameters Ω such that

|x̂(t)− x(t)| ≤ ϵ , ∀t > to , ∀ (x0, z0) ∈ X × Z0

Question: For which activation functions σ in the RNN do we get this
property ?
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A particular case

The case of a linear activation function in the RNN

żi = kλizi + y , i = 1, . . . ,m

⇒ We recognize KKL observer dynamics.

KKL Paradigme: If the system is observable, picking m sufficiently large, there
exists Tinv : Rm 7→ Rn, such that x̂(t) = Tinv(z(t)) gives a KKL asymptotic
observer !

▶ Local version: Shoshitaishvili-90, Kazantzis-Kravaris-98

▶ Global version: Kreisselmeier-Engel-2003, VA-Praly-2006,
Brivadis-VA-Bernard-Serres-2023

▶ Time varying version: Bernard-VA 2019

▶ Discrete time version: Tran-Bernard 2024



KKL observers

Given m linear filters

żi = kλizi + y , i = 1, . . . ,m

KKL is a two steps procedure

Step 1: The state of the filter provides new information

Theorem (VA-Praly-2006)

Let X be a compact invariant subset of Rn. For all k > 0 and all λ1, . . . , λm

negative, there exists a (continuous) function Tk : Rm 7→ R such that

|z(t)− Tk(x(t))| ≤ e−k maxi {λi}t |z0 − Tk(x0)| , ∀(z0, x0) ∈ Rm ×X

⇒ If Tk is invertible, we get a state observer



KKL observers

Assumption: Differential observability in X
There exists an integer m ≥ 1 such that the map Hm : Rn → Rm defined by:

Hm : x 7→
(
h(x) Lf h(x) . . . Lm−1

f h(x)
)

is Lipschitz injective on X .

Theorem (VA-Praly-2006, VA-2014)

Let X ⊂ Rn be compact invariant. There exists k∗ such for all k ≥ k∗, Tk is
C 1 and Lipschitz injective

If Tk is injective, there exists Tinv such that Tinv(Tk(x)) = x !



KKL observers

An (asymptotic) observer is:

x̂ = Tinv(z) , żi = kλizi + y , i = 1, . . . ,m

Theorem (VA-2014)

Let X ⊂ Rn be compact invariant. There exists k∗ such for all k ≥ k∗, there
exists a C 1 mapping Tinv : Rm 7→ Rn and a constant c such that

|Tinv(z(t))− x(t)| ≤ ckme−k maxi{λi}t(|z0|+ 1) , ∀(z0, x0) ∈ Rm ×X

⇒ For each (ϵ, to) there exists k∗ such that for all k ≥ k∗

|Tinv(z(t))− x(t)| ≤ ϵ , ∀t > to , ∀ (x0, z0) ∈ X × Z0

⇒ We have a tunnable asymptotic observer

Question: How to compute Tinv ?



MLP as approximator of Tinv

Tinv is C 1 ⇒ MLP can approximate it !

Universal Approximation Theorem my MLP (Cybenko 80’)

There exist activation functions such that for each ϵ, for each compact Z ⊂ Rm

there exists parameters ΩMLP such that with γ(z) = MLPΩMLP (z)

sup
z∈Z

|γ(z)− Tinv(z)| ≤ ϵ

Hence, with x̂(t) = γ(z(t))

|x̂(t)− x(t)| ≤ |γ(z(t))− Tinv(z(t))|︸ ︷︷ ︸
≤ϵ

+ |Tinv(z(t))− x(t)|︸ ︷︷ ︸
≤ϵ

Theorem

y → Linear Filter
żi = kλizi + y

→ Observer output
MLPΩMLP

→ x̂(t)

is a tunable observer structure

Question: What can we say for motonic activation function ?
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A contracting nonlinear filter dynamics

Consider a continuous time model of RNN

żi = kλiσ(zi , y)

Where the function σ satisfies:

0 < γ ≤
∣∣∣∣∂σ∂y (z , y)

∣∣∣∣ , −β ≤ ∂σ

∂z
(z , y) ≤ −α < 0

▶ In the following, k >> 1 we are following a high-gain approach

▶ λi are taken different for each i

Question: Can we follow the same procedure as the linear case ?



A contraction

It can be noticed that the map σ verifies

∂σ

∂z
(z, y) +

∂σ

∂z
(z, y)⊤ < −µ Im ,∀(z, y) ∈ Rm × R,

⇒ This system defines a contraction

Theorem (Pachy-VA-Bernard-Brivadis-Praly-2024)

Let X ⊂ Rn be a compact invariant set. For all (λ0, . . . , λm−1) and for all
k > 0 there exists a continuous function Tk : Rn → Rm such that,

|z(t)− Tk(x̂(t))| ≤ e−αk maxi{λi}t |z0 − Tk(x̂0)|

Sketch of the proof:

▶ X is invariant ⇒ t 7→ y(t) is a bounded signal in R
▶ Pavlov 2004 ⇒ ∃ a unique bounded solution t ∈ R 7→ z̄(t) exp. attractive

▶ Tk(x) = z̄(0)

Question: What can we say about its regularity and its injectivity ?



A contraction

Assumption: Differential observability in X
There exists an integer m ≥ 1 such that the map Hm : Rn → Rm defined by:

Hm : x 7→
(
h(x) Lf h(x) . . . Lm−1

f h(x)
)

is Lipschitz injective on X

Theorem (Pachy-VA-Bernard-Brivadis-Praly-2024)

Let X ⊂ Rn be compact invariant. There exists k∗ such for all k ≥ k∗,

▶ Tk is C 1 and Lipschitz injective.

▶ There exists a C 1 mapping Tinv : Rm 7→ Rn and a constant c such that

|Tinv(z(t))− x(t)| ≤ ckme−αk maxi{λi}t(|z0|+ 1) , ∀x ∈ X

⇒ We have a tunnable asymptotic observer



Sketch of the proof

Question: How to check regularity and injectivity ?

Formally, if Tk = (Tk1, . . . ,Tm) is C
1, it is solution to the PDE:

∂Tki

∂x
f (x) = (kλi )σ(Tki (x), h(x))

Key idea: Make an approximation of Tki in
1

(kλi )
m and work on it !

Approximation of Tk

There exists ϕ1, . . . , ϕm such that

Tki (x) =
m−1∑
ℓ=0

ϕℓ(x)

(kλi )ℓ
+ Ri (x)

and, if k >> 1, there exist positive real numbers (independant of k)

|Ri (x)| ≤
c

km
, |Ri (xa)− Ri (xb)| ≤

c

km
|xa − xb|



Sketch of the proof

In conclusion ϕ(x) = (ϕ1(x), . . . ϕm(x)), R(x) = (R1(x), . . . ,Rm(x))

T(x) = VK−1ϕ(x) + R(x),

with K = diag
(
1, . . . , km−1

)
and V is the Vandermonde matrix

V =


1 λ−1

0 . . . λ
−(m−1)
0

...
...

. . .
...

1 λ−1
m−1 . . . λ

−(m−1)
m−1

 . (1)

The function ϕi depends on h(x), Lf h(x), . . . , L
i−1
f h(x) ⇒ with observability

assumption, ϕ is Lipschitz injective

⇒ There exists c, such that for k >> 1

|T(xa)− T(xb)| ≥
c

km
|xa − xb|

There exists a Lipschitz function Tinv such that the result holds

|Tinv(z(t))− x(t)| ≤ ckme−αk maxi{λi}t |Tinv(z0)− x0|



MLP as approximator of Tinv

y → Contractive Filter
żi = kλiσ(zi , y)

→ Observer output
x̂ = Tinv(z)

→ x̂(t)

is a tunnable observer !

Tinv is globally Lipschitz ⇒ MLP can approximate it !

Theorem : With RNN modeled as a continuous time dynamics

y → RNN
żi = kλiσ(zi , y)

→ Observer output
MLPΩMLP

→ x̂(t)

is a tunable observer structure
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Nonlinear or linear activation function for the RNN

Is it better to use linear or nonlinear activation functions ?

Given a linear KKL observer:

x̂ = Tinv(z) , żi = kλizi + y , i = 1, . . . ,m

Observer paradigm : Two cases may be distinguished

1. If k is large:

▶ Convergence rate is high
▶ Less robustness to measurement noise

2. if k is small:

▶ Convergence rate is slow
▶ Better robustness to measurement noise

Question: How to combine both good points ?



Nonlinear or linear activation function for the RNN

We want

▶ Fast observer in the transient

▶ Slow/robust observer at ”steady state”

Note that at steady state, z ≈ y

A possible nonlinear structure for the filter could be

ż = λ(afast(z − y) + (aslow − afast)tanh(z − y))

⇒ monotonic function ⇒ We can learn the mapping Tinv



Nonlinear or linear activation function for the RNN

Consider a nonlinear Duffing oscillator{
ẋ1 = x2
ẋ2 = −0.2x1 − x3

1
, y = x1,

3 activation functions

ż = λ(afast(z − y) + (aslow − afast)tanh(z − y))

ż = λafast(z − y), ż = λaslow(z − y),
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In Conclusion

▶ It is possible to show that a continuous time model of an observer based
on RNN and MLP gives a tunnable observer

▶ The proof is based on the use of a nonlinear version of KKL observer

▶ The use of nonlinear KKL observer may be interesting to combine
different behavior

▶ What about discrete time version ?
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